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Abstract
A virus is a local coufiguration that prevents a graph (digraph) from possessing a given property
P. We give an exact and a genetic algorithm for deciding whetlier a given structure is a virus for the
hamiltonian property. These algorithms can be used for identifving families of nou hamiltonian digraphs.
Key words: digraph, digraph properties, virus, hamiltonicity. non-haniiltonicity, geuetic algorithm,
algorithms.

1 Introduction

It is well known that the problemn to decide when a graph (digraph) is hamilconian is NP-complete [4]. A
method, based on an exact and a genetic algorithing, is presented for identifving hauniltonian viruses. The
method is supported by a theoven, characterizing local structures as hauiltonian vivus [3. 3],

As a consequence we can derive a procedure for deciding whether a given digraph is non-hamiltonian.
This procedure is of the same complexity of the problem of deciding if a given digraph is hamiltonian, but
the interest of the procedure is the fact of using a local structure.

A Vyes” answer to the hamiltonicity problemn in a given digraph (ov graph) can be verified by checking in
polynomial time that a sequence of vertices given by an oracle is i hamiltonian cycle (ov circuit). In case of
non-hamiltonian digraphs, as stated in [6] pages 28, 29, there is 1o kunown way of verifying a “yes™ answer
to the complementary problem of deciding if a digraph is nou-hamiltonian. A solution to this problem is
to provide a hamiltoniau virus, in the sens of [5, 3] (sce definition below) whose presence in the digraph
can be also checked in polynomial time, as it will be mentioned at the end of this section. In case the
non-hamiltonian digraph does not contain hamiltonian viruses. it must have a particular structure, as can
be seen in Theorem 2.

The virus notion has been used in random generation of digraphs without certain propervties [9, 8].
With respect to the hamiltonicity problemn, it can be important to detect hamiltonian viruses present in a
digraph, particularly "small” virus classes for which our method shows a good behaviour. Additionally, the
identification of hamiltonian viruses in a digraph can be useful in order to eliminate them hy adding the
required (minimal) nmunber of arcs.

1.1 Terminology
Let P be a property defined on all digraphs and let IN be the set of nonnegative integers.

Definition 1 [5] A digraph virus is a S-uple (1,777,717, f7. [~ where 1 = (V' (1), 12(H)) is a digraph,
(with a non empty vertex set), 1=, T~ are parts of the vertex set of H, and f=. f~ are mappings from T, T
to N respectively.
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A digraph virus (H, T+, T, f*, f7) is present in a digraph D if D has a proper induced subdigraph H
isomorphic to H (for convenience we identify H with H ), such that the equalities dh(z) = fH(2) + df (x)
on each vertez x of T and dj(z) = f~(2) + di(z) on each vertex x of 1=, hold.

A digraph virus V is o virus for a digraph property P if every digraph where V' is present, lacks property
P. The cardinality of V is defined as the order of H.

In a similar way of [5, 3] we define a graph virus (H, 7T, f) where H = (V (1), I5(11)) is a graph, 7" C V(H)
and f is a mapping from 7" to N.

Lemma 1 [5] If a digraph of order n has no virus of order h < n for some property P, then it has no virus
of order less than h for P.

Equivalently, a virus for a property P is present in viruses of larger order for that property.
Remark 1 If a digraph contains viruses then some virus of order n. — 1 must be present.

Somne properties are characterized by viruses; more precisely, a property P is characterized by a class of
viruses V if the following assertions are equivalent:

(i) G does not have property P
(#3) a virus V € V is present in @

In general, the class of all viruses for property P establishes only that (¢4) = (¢). ln [3], it is proven that
the properties “G is connected” and “G is strongly connected” are characterized by viruses.

On the other hand, in [10] it is shown that the viruses for property “G is bipartite” do not characterize
this property. In a similar way in [10] it is shown that the viruses for the property “G has a perfect matching”
do not characterize this property; moreover, a characteristic property of the graphs without perfect matching
and no viruses for the property “G has a perfect matching” is also given in [10] .

In [5, 7] it is shown that the hamiltonian property is not characterized by its viruses, at least for digraphs.

Deciding the existence of ”small” hamiltonian viruses can be useful, if the following metaconjecture is
true for the hamiltonian property:

For many important properties there exist viruses of small order in almost all instances in
which the property is not present.

This metaconjecture is useful because the presence (or absence) of a hamniltonain virus of order k inside
a digraph of order n can be detected by a procedure in O(n*) time. If k is a small number (say, less than
or equal to 3) then, an almost surely correct answer to the question does (¢ have property ¢ can be given
by a procedure with "small” time complexity. There are two examples in favor of this metaconjecture. It
is proved for non strongly connected graphs in [2] and graphs without perfect matching in [3] that “almost
all” of them contain a virus of smallest order of the class; "almost™ should be understood here in its usual
probabilistic sense meaning a proportion tending to 1 as the number of vertices tends to infinity.

Our paper is structured as follows: in section 1 we give an introduction to our approach, based on previous
results. Section 2 containg the characterization of hamiltonian viruses. Scection 3 and Section 4 presents an
exact and a genetic algorithnn, for deciding whether a given uple is a hamiltonian virus. The paper concludes
with Section & where some open questions related to the notion of hamiltonian viruses are posed.

2 Viruses for “hamiltonian” property

The following theoremn is an extension of the one given in [3] about viruses with 7+ = 7=

Theorem 1 [5] (H, T, T~,f%,f7) is a virus for the property “D is hamiltonian” if and only if for every
set of disjoint paths Py, -, P, covering V (H) there exists a path P; = (a! ...,:1:7("))) with q(3) > 1 such

i ok J
that either f_(.'l,']l») =0 or f*(;(:fl’.(")) = (.
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Figure 1: A non-hamiltonian digraph 11" without virus

Thus, for each z € T (resp. 77) only the fact whether f7(x) (vesp. f~(x)) is strictly greater than 0 or
not matters and we can sirnplify the notation to V= (H,77,77). I this case, V' = (H, T, T7) is present in
adigraph D if and only if there is a copy H (which we also denote by H) in D with 77 = {a : rl,+1(:1:) =d¥(x)}
and 77 = {2 : dg(2) = d7(x)}. This means that the vertices in 777 send no edge outside V(H) and the
vertices in T~ receive no edge from the outside of 1V (/).

~ The following theorem is also proved in [5]

Theorem 2 [5] A digraph D has 1o wirvees for the hamiltonian property if and only if it has the following
structure: for each vertex x the remaining part D\ z has a covering by vertex disjoint paths Py, ..., P. such
that each of them constitutes a circuit with z.

The digraph W in figure 1 shows that there exist non hamiltonian digraphs without any virus. In ¥
there are no hamiltonian viruses of order 6. Then by Remark 1, 117 does not have viruses.

Definition 2 Let H = (\'(H). E(H)) be a proper induced subdigrapl of a given digraph D.  We define
the 3-uple Vp associated to H in D as follows: Vi = Vi, = (H15.77), where TS = {x € V(H) :
NY@)Nn(V(D)\V(H) =0} and Ty ={x e V(H) : N~ () 0 (V (D) \ V(1) =0}

Thus Vp is a virus present in D,

Let H = (V(H), E(H)) be a proper induced subdigraph of a given digraph D. We will show that, in order
to prove the existence of hamiltonian viruses, where the first component is isomorphic to H, it is sufficient
to consider the 3-uple Vp associated to H in D.

iFrom Lemnma 1, a given digraph D has a hamiltonian virus if the 3-uple V) associated to H = D — ¢
in D is a hamiltonian virus for some vertex x of D. Otherwise the digraph 1) does not contain harniltonian
viruses.

Remark 2 ;From Theoremn [ and Theorem 2 the set of digraphs can be partioned into the following disjoint
classes:

- hamiltonian digraphs.

- non-hamiltonian digraphs without hamiltonian viruses. They have the structure given in Theorem 2
with, of course, r > 2, for each «.

- (non-hamiltonian) digraphs with hamiltonian viruses.

Theorem 3 Let D = (V,E) be a digraph and let H = (V(H),E(H)) be a proper induced subdigraph of
D. Assume that V = (H,TT,T7) is a hamiltonian virus present in D, then the J-uple Vp = (H,T5,Tf)
associated to H in D is a hamiltonian virus present in D.

Proof : Let P,..., P, be a set of disjoint paths covering V' (H). Since V' is a hamiltonian virus then
there exists a path, saving Pj = (_‘1‘_;., Cey ;(tj(")), Wi,th q(y) > 1 such that either f’(;(:}) =0 or 'f.+(:1:j'(])) =)
Without loss of generality, let us assuine f"(u:;'.m) = 0. Hence, by definition of 177 we have :1:;/-(") e T}.
Therefore Vp is a hamiltonian virus. O
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Remark 3 Let D = (V, E) be o digraph and let H = (V(H), E(H)) be a proper induced subdigraph of D. If
the 3-uple Vp = (H, T}, TF) associated to H in D is o hamiltonian virus then:

1. Any 3-uple V = (H,T*,T7) present in D with Ty, C 7=, T}, CTF is a hamiltonian virus.

2. There may exist 8-uples (H, 7T, T~) with TT C T} or T~ C T}, present in D that are hamiltonian
viruses. For example: let D be the digraph constituted by the symnetric circuit Cy = (bedeb) with the
symmetric edge ab. The 3-uples Vp associated to Cy and (Cy,TT,T7) with TT = {e,c}, T™ = T[ are
hamiltonian viruses.

Remark 4 Let D = (V, E) be a digraph and let H = (V (H), [5(H)) be a proper induced subdigraph of D. If
(H,T*,T~) is a hamiltonian virus present in D then:

(H\S,Tt,T7) where S={x e V(H)\(TTUT") :ay € E,yx € E Y y € V(TTUT™)} is a hamiltonian
virus present in D.

Proof : Directly from Theorem 1.

3 An exact decision algorithm

Let H = (V(H), E(H)) be a digraph. In this section an algovitlnn is presented for deciding whether a
given 3-uple (H, T, T7) associated to H is a hamiltonian virus. The algorithim is based on Theorem 1 for
characterizing hamiltonian viruses. The main idea is to determine a sct of paths with initial and tenninal
vertex in the complement of 7'~ and 7% w.r.t V (/1) respectively, which covers V(). If there is no such
covering, then the 3-uple is not a hamiltonian virus.

3.1 The problem

From Theoremn 1 and Theorem 3, the 3-uple (H,7'7,77) associated to H is not a hamiltonian virus if
and only if there exists a set of disjoint paths Py,..., P covering V' (//) such that for every path P; =

o1 q(4)
(@5, 7;

), 1 <7 <, the following condition holds:
A g = S0ld) g
wy T and 2 g1 (1
A covering has to be found verifying (1), in case of not finding the 3-uple candidate that is effectively a
harniltonian virus.
3.2 The algorithm

In order to find the path covering V (H) satistying (1), the algorithm perforins the following two steps:
1. Building the set P of all paths satistying (1)

2. Looking for a covering of V' (#) using the paths found in the previous step.

3.2.1 Building the sct of paths

The recursive function FIND_PATHS (a_path: path) builds all the paths beginming by the initial path
a_path. For each vertex v of T~ a call to FIND_PATHS((v)) is made.

P .= {;

FIND_PATHS (c: path)

{

if (last_vertex(c) € T'T)
P := P U{c}
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for each successor s of last_vertex(c)
if (s € ¢) FIND_PATHS( ¢ + (3));
}

+ denotes the path concatenation operation.

3.2.2 Locking for the covering

The search of a covering is a Branch and Bound implemented by the recursive ftunction COVER. The two
parameters of COVER (covered: wertea_list. disjoint_paths: path-list) memorize the state of the search of
the covering in the tree of all the possibilities.

The parameter covered is the list of the vertices alveady covered in the actual state and the parameter
disjoint_paths is the list of paths which are disjoint from covered, and also which can be used to continue
the search for a covering,.

The list disjoint_paths allows to prune the number of branches by rveducing the nuinber of paths available
to go further. Moreover, a bound can be determined if this list does not coutain “enough” vertices. The
branches and bounds are defined as follows:

BRANCHES:

e USE the first path of disjoint_paths

e DON'T USE the first path of disjoint _paths and forget it
BOUNDS:

e SUCCESS if covered covers all the vertices of V(1)

e FAILURE if the set of all vertices of all the paths of disjoint_paths docs not contain all the vertices
needed to complete the covering.

To start the search, the initial call is COVER((), P): no vertex is covered and all the paths could be
used.

virus := true; .
COVER (covered: wvertex_list, disjoint_paths: path_list)

{
if | covered |=| V' (H) |
virus = false:
exit:
if | covered [J( U Vi) =1 V() |

zedisjoint_paths
a7 := first_path (disjoint_paths);
COVER(covered UV (z), {2 € disjoint_paths / « N = = 0}):
COVER(covered , disjoint_paths -{z, });

The virus variable contains the result. If virus = true the tested configuration is a virus.

3.2.3 Complexity

The first step of the algoritlun (building the list of all the paths) takes the greatest time and menory space.
The number of paths could be huge: in the worst case, a complete digraph /1 of ovder N with 77 =77 = {)
has N = YL, l! paths (all the arrangements of any size of n elements). Then this mumber could be reduced to
2" (the number of parts of a set of n elements) because the order of the vertices in the path is not important
in the search for the covering. The path is stored if the set of its vertices is not already present. This check
take 2V steps. The second part (looking for the covering) in the worst case consists in building all the
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coverings of a set of n elements that is: Z:f_] B,, = B, where 13, is the munber of ways of splitting a set
of n elements into r parts. We know that

|
B, ~ W exp(n(d — 14+ .371))

[11] where 3 is defined hy Be? = n.This maximum bound is huge, but in practice, a vapid answer is possible
with a configuration up to 15 vertices.

4 A genetic algorithm

We also propose a genetic algorithi for deciding whether a given 3-uple (/1,77,77) associated to H is a
hamiltonian virus.

The idea is to focus this problem as an adaptation of the Traveling Salesman Problem (‘TSP). The vertices
are seen as towns, and a special distance between two towns is defined.

4.1 How to focus the problem of a hamiltonian circuit as a TSP

It is easy to adapt the TSP to find a hamiltonian circuit in a digraph /1: A circuit C is represented by a
chrornosome of n = | V(H) | genes. Each gene represents a vertex. The chromosome represents the sequence
of vertices visited. It is a path representation. For example the chromosome C = (3 5 2 1 4) naturally
represents the circuit 3-5-2-1-4-3.

The fitness function F(C) is the length of the tour .

n—1
() = demw(.\'i,.\'m) Jwith X, = X,

i=0
The distance is defined as follow:

Oif (X,Y)isanarcof 1/
1 otherwise

distance(X,Y) = {
The genetic algorithim is used to minimize the fitness.

4.2 Hamiltonian circuit and hamiltonian virus

The following lemma establishes a relationship between the problemms of deciding it a digraph is hamniltonian
and the one of deciding if a given 3-uple is a hamiltonian virus.

Lemma 2 Let (H,77,77) be a giwen 3-uple and let H' = (V' EY) be a digraph with V' = V(1) and
E' = BEH)U(T* xT7). Then (H,77,77) us not o hamiltonian virus if and only if 11" has o hamiltonian

circuit which contains at least an arc (X,Y) € (1'T x17).

Proof : Let C be a hamiltonian circuit of //'. Let (X1, X1) € C, 1 < i <[, the arcs belonging to
(7: X T:) oFrom this circuit we can construct the following covering of V' (H):
(X1, ... ,Xi), o (Xi, o Xfl) R (X’_, o ,Xj_) . All the paths start from a vertex of 7= and end with
a vertex of TF. i.e satisty condition (1)(see 3.1)

Reciprocally, let C', ..., C4, ... Cp he a covering of V/(H) satisfying condition (1).

IfCy=(X7,..., X)), | <i<[then

= Coo gy rrov—= OO oy+ : . I e . .
X “ XEXS = XS X7 X7 =X s achamiltonian civeuit of 1(/77) hecause for all 1 < < [ we
have (X7, X7 ) € (I'™ xT~) with X = X, ]
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Based on this lemma, we design a new fitness function F(C) and a new distance in order to deterinine
whether a structure is a virus:
n—1
FC) = E distance( Xy, Xioy) + penality

=0

with X,, = Xo and penality # 0 if C does not contain arcs in (7~ x 7'7).
The new distance function is defined to add the virtual conmections (17— x 1)

Oef (X, Y ) ds anarcof Il
distance(X,)) = Oef X €TTandY €1~
1 otherwise

We are looking for a null Iength tour. Thanks to the penality we are sure that such a tour contains at
least a sequence X; X, with \; € T= and N, eT-. .
For exarnple if the chromosome C = (Xg V) ... Xy) has a fitness value null, then it as a structure such as:
C:Xo™ X, X, T 09N, W N, W N, TN, v W,
Where 5 denotes the presence of an arc. and = denotes a couple in (7% x 77)
this chiromosome C represents the covering of V(H) with the two paths:
,Y7 — }\’8 — ,\rg — )\,() — .\'1 — 4\,~_) and 4\';3 — 4\74 — .\'7, — _\,(;.

4.3 Characteristics of the genetic algorithm

e We have opted for a steady state algorithim (i.e that uses overlapping populations, only a part Pecpracement
of the population is replaced at each generation)

e The genetic coding uses a path representation.
o We use the edge recombination crossover [13] which preserve the path structure.
e The edge recombination crossover is modified to take into account the orientation of the ares.

e The initial population is formed randomly but cach chromosome is built to have-as much as possible
a good fitness value. The first "town™ is choosed randomly among all the “towns™, the next one is
choosed randomly among the "towns” connected to the previous 7town™, if possible. This improvement
allows to build an initial population with a best valuc.

4.4 Experimental results

We ran the algorithm on different examples of hamiltonian digraphs, finding almost always the circuit after
less than 200 generations. So, when the algorithm does not find a circuit after 200 generations it could means
that the digraph does not contain one. The population size seemns to he an important parameter which had
to be augmented with the digraph size. Figure 2 shows the hehaviour of the algorithim when used to find a
hamiltonian circuit for a digraph with 100 vertices and 250 arcs. We also used, sce fipure 3, the algorithm to
decide if a given 3-uple, of order 100 with 250 arcs and wich |77 | = |77 | = 90. is not a vivus, by finding
a covering. The figures show the evolution of the fitness value of the best individual and the average fitness
value of the total population. The evolution stops when the hest individual becomes zero, meaning that a
circuit (in the first example) or a coveriug (in the second example) has heeu found. The most important
parameters are the same in both cases, namnely population size = 200, P urarion = 0.05, and Frciloceniont —

0.5.
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Figure 3: Convergence to zero, a covering is found

5 Remarks and open problems

A digraph D is hypohamiltonian if it has no hamiltonian circuit but cvery vertex-deleted subdigraph D — v
has such a circuit. Hypohamiltonian graphs are defined analogously.

The following conjecture should be true for digraphs:

Conjecture 1 Ewvery non-hamiltonian digraph without hamiltonian viruses is hypohamiltonian.

However, as we shall see leter, the following conjecture is false.
Conjecture 2 Fvery hypohamiltonian digraph has no hamiltonian viruses.

Notice that the digraph in Figure 1 is hypohamiltonian and without hamiltonian viruses. In [12] Thomassen
gives a method for obtaining hypohamiltonian digraphs by forming the cartesian product of cycles. We give
here a short summary of his results, in order to give some remarks on Conjecture 1 and Conjecture 2.

Recall that if D, and D, are digraphs, then the cartesian product D; x D, is the digraphs with
vertex set V(Dy) x V(D,) such that the edge from (vi, 1) to (u;,us) is present if and only if v; = u; and
vouy € E(Da), or va = us and viu; € E(Dy). The directed cycle of length &k, 2 < k, is denoted Cf. With
this notation Thormassen gives the following theorems:

Theorem 4 [12] For each k > 3, m > 1, Cx x Cyp—y is a hypohamiltonion oriented digraph (i.e. no cycle
of length 2). Moreover, C3 x Cyrrq is hypohamiltonian for cach k > 0.

Theorem 5 [12] There is no hypohamiltonian digraph with fewer than siz vertices, and for each odd m > 3,
Cy x Cy, s a hypohamiltonian digraph.
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Conjecture 2 is not true for graphs as it can be deduced from the following cheorems:

Theorem 6 [3] (H,T. f) is a virus for the property G is hamiltonian™ if and only if for cvery sct of disjoint
paths Py, -, P covering V' (H) there exists a path I’; such that: if I; consists of just one vertex {JJ‘} then

.1 ; > = [l atJy) o F(l) — b g0y
f(xj) <1 and if V(Pj) = {aj, -, 8} then f(a) =0 or f(7) = 0.
This theoremn characterizes the hamiltonian viruses for graphs and it is used i [5] to show that:

Theorem 7 A non-hamiltonian graph with minimum degree less than or equal to 3 contains always o virus
for the hamiltonian property.

Finally, Theorem 8 is used in Corollary 1 to show that the conjecture 2 is false for planar graphs:
Theorem 8 [12] Every planar hypohamiltonian graph contwins o verter of degree 3.
Corollary 1 Ivery planar hypohamiltonian graph contains olways o virus for the hamiltonian property.

Remark 5 The hypohamiltonian digraphs Cs x Cop—eyq with k > 0 (Theoren, ) and the hypohamiltonian
digraphs giwen in Theorem 5 verify Congecture 2. However the digraph C'y x Cyy de. k=4 and m = 3 in
Theorem 4 no verify Conjecture 2.

Finallv, we suspect that the following conjecture is feasible to be true.

Conjecture 3 Luery non-hamiltonion vertez-transitive digraph without hamaltonioen viruses is hypohamilto-

nian.
We have proved that the only non-hamiltonian vertex-transitive digraph without hamiltonian viruses and
of order 6. is the hypoliamiltonian digraph Cy x C3. Which is in favour of Conjectuve 3.

Other interesting problems concerning hamiltonian virus theory are:

1. Evaluate the complexity of the problem: decide whether a 3-uple (/4,777,777 ) is a virus for hamiltonian
property.

2. The detection of hamiltonian viruses in a digraph and their descruction by minimal changes (addition or
removal of arcs, for exaimnple) could lead to amoderate change to the graph that gives ic the hamiltonian
property.

3. Evaluate how close is the hamiltonian property aud the property 2 has no hamiltonian virus of order
< n. This evaluation is useful to design approximate algorithims tor hamiltonicity property, with their
asymptotical error probability.

4. The study of sufficient conditions for (detecting) the presence of hamiltonian vivuses ina digraph, is
an important open problem. For instance, Theorem 7 stated above.

5. New sufficient conditions may arise fromn virus theory in order to cusure the hamiltonicity of a digraph
famnily.
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